Consider the reaction below for which K = 78.2 atm-1. A(g) + B(g) ↔ C(g) Assume that 0.386 mol C(g) is placed in the cylinder represented below. The barometric pressure on the piston (which is assumed to be massless and frictionless) is constant at 1.00 atm. The original volume (before the 0.386 mol C(g) begins to decompose) is 7.29 L. The temperature is fixed and can be determined from the idea gas law. What is the volume in the cylinder at equilibrium?

Respuesta :

Answer:

1.65 L

Explanation:

The equation for the reaction is given as:

                        A            +            B           ⇄        C

where;

numbers of moles = 0.386 mol C  (g)

Volume =  7.29 L

Molar concentration of C = [tex]\frac{0.386}{7.29}[/tex]

= 0.053 M

                        A            +            B           ⇄        C

Initial               0                           0                      0.530    

Change          +x                          +x                       - x

Equilibrium      x                           x                      (0.0530 - x)

[tex]K = \frac{[C]}{[A][B]}[/tex]

where

K is given as ; 78.2 atm-1.

So, we have:

[tex]78.2=\frac{[0.0530-x]}{[x][x]}[/tex]

[tex]78.2= \frac{(0.0530-x)}{(x^2)}[/tex]

[tex]78.2x^2= 0.0530-x[/tex]

[tex]78.2x^2+x-0.0530=0[/tex]  

Using quadratic formula;

[tex]\frac{-b+/-\sqrt{b^2-4ac} }{2a}[/tex]

where; a = 78.2 ; b = 1 ; c= - 0.0530

= [tex]\frac{-b+\sqrt{b^2-4ac} }{2a}[/tex]   or [tex]\frac{-b-\sqrt{b^2-4ac} }{2a}[/tex]

= [tex]\frac{-(1)+\sqrt{(1)^2-4(78.2)(-0.0530)} }{2(78.2)}[/tex]  or [tex]\frac{-(1)-\sqrt{(1)^2-4(78.2)(-0.0530)} }{2(78.2)}[/tex]

= 0.0204  or -0.0332

Going by the positive value; we have:

x = 0.0204

[A] = 0.0204

[B] = 0.0204

[C] = 0.0530 - x

     = 0.0530 - 0.0204

     = 0.0326

Total number of moles at equilibrium = 0.0204 +  0.0204 + 0.0326

= 0.0734

Finally, we can calculate the volume of the cylinder at equilibrium using the ideal gas; PV =nRT

if we make V the subject of the formula; we have:

[tex]V = \frac{nRT}{P}[/tex]

where;

P (pressure) = 1 atm

n (number of moles) = 0.0734 mole

R (rate constant) = 0.0821 L-atm/mol-K

T = 273.15 K  (fixed constant temperature )

V (volume) = ???

[tex]V=\frac{(0.0734*0.0821*273.15)}{(1.00)}[/tex]

V = 1.64604

V ≅ 1.65 L