Consider a uniform distribution that is defined for 1 ≤ X ≤ 5 . a. Sketch the distribution. b. What is the probability that X falls below 1.5? c. What is the probability that X lies above 2.5? d. What

Respuesta :

Answer:

a) [tex] X \sim Unif(a= 1, b=5)[/tex]

The density function for this case is given by:

[tex] f(X) = \frac{1}{b-a}= \frac{1}{5-1}= \frac{1}{4} , 1\leq X \leq 5[/tex]

And the distribution is on the figure attached

b) [tex] P(X <1.5)[/tex]

And for this case we can use the cumulative distribution function given by:

[tex] F(x) = \frac{x-a}{b-a}= \frac{x-1}{5-1}= \frac{x-1}{4}, 1\leq X \leq 5[/tex]

And if we use this formula we got:

[tex]P(X<1.5) = \frac{1.5-1}{4}= \frac{0.5}{4}= \frac{1}{8}=0.125[/tex]

c) [tex] P(X >2.5) [/tex]

And we can use the complement rule and the cimulative distribution function and we can rewrite the expression like this:

[tex] P(X >2.5) = 1-P(X<2.5) = 1-F(2.5) = 1-\frac{2.5-1}{5-1}= 1-\frac{1.5}{4}= 1-\frac{3}{8}= \frac{5}{8}=0.625[/tex]

d) [tex]P(X<1) = \frac{1-1}{4}= \frac{0}{4}= 0[/tex]

Step-by-step explanation:

Part a

For this case we define the random variable X and the distribution for X is given by:

[tex] X \sim Unif(a= 1, b=5)[/tex]

The density function for this case is given by:

[tex] f(X) = \frac{1}{b-a}= \frac{1}{5-1}= \frac{1}{4} , 1\leq X \leq 5[/tex]

And the distribution is on the figure attached

Part b

For this case we want this probability:

[tex] P(X <1.5)[/tex]

And for this case we can use the cumulative distribution function given by:

[tex] F(x) = \frac{x-a}{b-a}= \frac{x-1}{5-1}= \frac{x-1}{4}, 1\leq X \leq 5[/tex]

And if we use this formula we got:

[tex]P(X<1.5) = \frac{1.5-1}{4}= \frac{0.5}{4}= \frac{1}{8}=0.125[/tex]

Part c

For this case we want this probability:

[tex] P(X >2.5) [/tex]

And we can use the complement rule and the cimulative distribution function and we can rewrite the expression like this:

[tex] P(X >2.5) = 1-P(X<2.5) = 1-F(2.5) = 1-\frac{2.5-1}{5-1}= 1-\frac{1.5}{4}= 1-\frac{3}{8}= \frac{5}{8}=0.625[/tex]

Part d"  What is the probability that X lies below 1?

[tex] P(X <1)[/tex]

And for this case we can use the cumulative distribution function given by:

[tex] F(x) = \frac{x-a}{b-a}= \frac{x-1}{5-1}= \frac{x-1}{4}, 1\leq X \leq 5[/tex]

And if we use this formula we got:

[tex]P(X<1) = \frac{1-1}{4}= \frac{0}{4}= 0[/tex]

Ver imagen dfbustos