If the fair price for a 4-year annuity paying $100 per year is $334.57, what is the yield to maturity on a four year zero–coupon bond?

Respuesta :

Answer:

YTM = 8%

Explanation:

$100 per year up to 4 years means, each year, the FV = $100.

We know, Zero coupon bond = [Fair Value ÷ [tex](1 + YTM)^{n}[/tex]]

As the 4-year annuity paying the different YTM in the previous three years, 4th year YTM will be -

Bond value = [tex]\frac{100}{1 + 0.6}[/tex] + [tex]\frac{100}{(1+0.07)^2}[/tex] + [tex]\frac{100}{(1+0.08)^3}[/tex] + [tex]\frac{100}{(1+YTM{4})^4}[/tex]

or, $334.57 = $94.3396 + $87.3439 + $79.3832 + [tex]\frac{100}{(1+YTM{4})^4 }[/tex]

or, $334.57 - 261.0667 = [tex]\frac{100}{(1+YTM{4})^4 }[/tex]

or,  [tex](1+YTM{4})^4[/tex] = ($100 ÷ $73.50)

or, 1 + YTM = [tex](1.3605)^{\frac{1}{4}}[/tex]

or, YTM = 1.08 - 1

YTM = 0.08 or 8%