(a) Show that the number of collisions a molecule makes per second, called the collision frequency, f is given by f= v/lₘ and thus f=4√(2) πr²v N/V.
(b) What is the collision frequency for N₂ molecules in air at T=20 °C and P=1.0x10⁻² atm?

Respuesta :

Answer:

47149435.4884 /s

Explanation:

[tex]k[/tex] = Boltzmann constant = [tex]1.38\times 10^{-23}\ J/K[/tex]

T = Temperature = 20 °C

P = Pressure = [tex]1\times 10^{-2}\ atm[/tex]

Average time between collision is given by

[tex]\Delta t=\dfrac{l_m}{v}[/tex]

Frequency is given by

[tex]f=\dfrac{1}{\Delta t}[/tex]

Mean free path is given by

[tex]l_m=\dfrac{1}{4\pi\sqrt{2}\times r^2\times \dfrac{N}{V}}[/tex]

[tex]\Delta t=\dfrac{\dfrac{1}{4\pi\sqrt{2}\times r^2\times \dfrac{N}{V}}}{v}[/tex]

[tex]f=\dfrac{1}{\dfrac{\dfrac{1}{4\pi\sqrt{2}\times r^2\times \dfrac{N}{V}}}{v}}\\\Rightarrow f=\dfrac{v4\pi\sqrt{2}\times r^2\times N}{V}[/tex]

Hence, proved.

Average velocity is given by

[tex]v=\dfrac{8kT}{\pi m}[/tex]

[tex]PV=NkT[/tex]

[tex]f=\dfrac{4\pi\sqrt{2}\times r^2\times (\dfrac{8kT}{\pi m})^{\dfrac{1}{2}}\times P}{kT}[/tex]

[tex]f=16r^2P(\dfrac{\pi}{kTm})^{\dfrac{1}{2}}\\\Rightarrow f=16(1.5\times 10^{-10})^2\times 1\times 10^{-2}\times 101325(\dfrac{\pi}{1.38\times 10^{-23}\times (20+273.15)\times 28\times 1.66\times 10^{-27}})^{\dfrac{1}{2}}\\\Rightarrow f=47149435.4884\ /s[/tex]

The collision frequency is 47149435.4884 /s