Consider Aluminium at room temperature. Its electron density is n = 18 x 10^22 cm-3 and its electrical resistivity is rho = 2.45 μΩ * cm.
a. Find its electron relaxation time τ and electron mean free path in the Drude model.

Respuesta :

The electron relaxation time is [tex]8.0605 \times 10^{-7} s[/tex]

The mean free path is [tex]9.67260 \times 10^{-2} m[/tex]

Explanation:

Electron density, [tex]n=18 \times 10^{22} \mathrm{cm}^{-3}=18 \times 10^{20} \mathrm{m}^{-3}[/tex]

Aluminium resistivity,  [tex]\rho=2.45 \mu \Omega . c m[/tex]

[tex]\rho=2.45 \times 10^{-6} \times 10^{-2}=2.45 \times 10^{-8} \Omega . m[/tex]

From the Drude's model we have:

[tex]\tau=\frac{m}{n \times q^{2} \times \rho}[/tex]

Where:

τ= Electron relaxation time

m = mass of a charge

q = magnitude of a charge

We know, electron mass = [tex]9.1 \times 10^{-31} \mathrm{kg}[/tex]

Charge of electron = [tex]1.6 \times 10^{-19} \mathrm{C}[/tex]

By substituting all given values for electron, we get

[tex]\tau=\frac{9.1 \times 10^{-31}}{18 \times 10^{20} \times\left(1.6 \times 10^{-19}\right)^{2} \times 2.45 \times 10^{-8}}[/tex]

[tex]\tau=\frac{9.1 \times 10^{-31}}{112.896 \times 10^{20-38-8}}[/tex]

[tex]\tau=\left(\frac{9.1}{112.896}\right) \times 10^{-31+26}=0.080605 \times 10^{-5}[/tex]

When multiply by 100 and divide by 100, we get

[tex]\tau=8.0605 \times 10^{-7} \mathrm{s}[/tex]

Mean free path is given as:

[tex]l=v_{a} \times \tau[/tex]

where:

l = Mean free path

[tex]v_{a}[/tex] = Average velocity of electrons

We know the general value for average velocity of electrons at room temperature:

[tex]v_{a}=120000 \mathrm{m} / \mathrm{s}[/tex]

Therefore,

[tex]l=120000 \times 8.0605 \times 10^{-7}=967260 \times 10^{-7} \mathrm{m}=9.6726 \times 10^{-2} \mathrm{m}[/tex]