The value of RootIndex 3 StartRoot x Superscript 10 Baseline EndRoot , when x = negative 2, can be written in simplest form as a RootIndex 3 Start Root b EndRoot, where
  a =
and b =
.

The value of RootIndex 3 StartRoot x Superscript 10 Baseline EndRoot when x negative 2 can be written in simplest form as a RootIndex 3 Start Root b EndRoot whe class=

Respuesta :

Answer:

The value of a = 8.

The value of b = 2.

Step-by-step explanation:

Given: [tex]$ \sqrt[3]{x^{10}} $[/tex] where, x = -2

[tex]$ x^{-10} = (-2)^{-10} $[/tex]

Since, the power is even (10), the resultant will be a positive number.

So, we have:

[tex]$ \sqrt[3]{(-2)^{-10}} = \sqrt[3]{2^{10}} $[/tex]

Note that: [tex]$ \sqrt[a]{x} = x^{\frac{1}{a}} $[/tex]

Also, [tex]$ x^a . x^b = x^{a + b} $[/tex]

Therefore, we get:

[tex]$ \sqrt[3]{2^{10}} = 2^{\frac{10}{3}} $[/tex]

[tex]$ = 2^{\frac{9 + 1}{3}} $[/tex]

[tex]$ = 2^{\frac{9}{3}} . 2^{\frac{1}{3}} $[/tex]

[tex]$ = 2^3 . \sqrt[3]{2} $[/tex]

Hence, a = 8; b = 2

Hence, the answer.

Answer:

A= -8

B= -2

gggt25tajhezthj3janzzjam