Respuesta :

Answer:

D. [tex]e=8.9\ cm[/tex]

Step-by-step explanation:

Given:

In triangle BTE

ET = 5 cm

BE = 6 cm

BT = [tex]e[/tex]

m∠E= 108°

To find the approximate value of [tex]e[/tex].

Solution:

We can apply cosine law to find the value of [tex]e[/tex]

By cosine law:

[tex]c=\sqrt{a^2+b^2-2ab\cos C}[/tex]

where [tex]a[/tex] and [tex]b[/tex] adjacent sides such that ∠C is the angle between them.

For the given triangle the cosine law would be represented as:

[tex]e=\sqrt{5^2+6^2-2(5)(6)\cos 108}[/tex]

Solving for [tex]e[/tex]

[tex]e=\sqrt{25+36-60(-0.30)}[/tex]

[tex]e=\sqrt{25+36+18}[/tex]

[tex]e=\sqrt{79}[/tex]

[tex]e=8.88\approx 8.9 cm[/tex]