Respuesta :
Answer:
Option C
Solution:
As per the question:
Velocity of the jet, v = 600 m/s
Acceleration, a = 4.0 g
Now,
To calculate the radius of curvature:
The necessary centripetal force on the jet is given by the force:
[tex]F = F_{c}[/tex] (1)
where
[tex]F_{c} = \frac{mv^{2}}{R}[/tex] = centripetal force
where
m = mass of the jet
R = radius of curvature of the path
Using eqn (1):
[tex]ma = \frac{mv^{2}}{R}[/tex]
Thus
[tex]a = \frac{v^{2}}{R}[/tex]
[tex]4.0 g = \frac{600^{2}}{R}[/tex]
where
g = acceleration due to gravity = [tex]9.8\ m/s^{2}[/tex]
[tex]4.0\times 9.8 = \frac{600^{2}}{R}[/tex]
[tex]R = \frac{600^{2}}{4.0\times 9.8}[/tex]
R = 9183.67 m ≈ 9200 m
The radius of curvature part will be "9200 m".
Given:
- Speed, v = 600 m/s
- Acceleration, a = 4.0 g
We know,
- g = 9.81 m/s²
then,
- [tex]4g = 39.24 \ m/s^2[/tex]
As we know,
→ [tex]v = wr[/tex]
[tex]600 = wr[/tex]
[tex]r = \frac{600}{w}[/tex]
By putting the value of "r" in the below formula, we get
→ [tex]a = w^2\times r[/tex]
[tex]39.24=w^2\times (\frac{600}{w} )[/tex]
[tex]w = 0.0654[/tex]
hence,
The radius will be:
→ [tex]600=wr[/tex]
[tex]r = \frac{0.0654}{600}[/tex]
[tex]= 9142 \ or \ 9200 \ m[/tex] (approx)
Thus the above response is right.
Learn more about acceleration here:
https://brainly.com/question/19338880