A jet plane flying 600 m/s experience an acceleration of 4.0 g when pulling out of a circular dive. What is the radius of curvature part of the path in which the plane is flying?


A) 7100 m

B) 650 m

C) 9200 m

D) 1200 m

Respuesta :

Answer:

Option C

Solution:

As per the question:

Velocity of the jet, v = 600 m/s

Acceleration, a = 4.0 g

Now,

To calculate the radius of curvature:

The necessary centripetal force on the jet is given by the force:

[tex]F = F_{c}[/tex]                                               (1)

where

[tex]F_{c} = \frac{mv^{2}}{R}[/tex] = centripetal force

where

m = mass of the jet

R = radius of curvature of the path

Using eqn (1):

[tex]ma = \frac{mv^{2}}{R}[/tex]

Thus

[tex]a = \frac{v^{2}}{R}[/tex]

[tex]4.0 g = \frac{600^{2}}{R}[/tex]

where

g = acceleration due to gravity = [tex]9.8\ m/s^{2}[/tex]

[tex]4.0\times 9.8 = \frac{600^{2}}{R}[/tex]

[tex]R = \frac{600^{2}}{4.0\times 9.8}[/tex]

R = 9183.67 m ≈ 9200 m

The radius of curvature part will be "9200 m".

Given:

  • Speed, v = 600 m/s
  • Acceleration, a = 4.0 g

We know,

  • g = 9.81 m/s²

then,

  • [tex]4g = 39.24 \ m/s^2[/tex]

As we know,

→ [tex]v = wr[/tex]

[tex]600 = wr[/tex]

    [tex]r = \frac{600}{w}[/tex]

By putting the value of "r" in the below formula, we get

→      [tex]a = w^2\times r[/tex]

  [tex]39.24=w^2\times (\frac{600}{w} )[/tex]

        [tex]w = 0.0654[/tex]

hence,

The radius will be:

→ [tex]600=wr[/tex]

      [tex]r = \frac{0.0654}{600}[/tex]

         [tex]= 9142 \ or \ 9200 \ m[/tex] (approx)

Thus the above response is right.

Learn more about acceleration here:

https://brainly.com/question/19338880