Respuesta :

Answer:

[tex]sin\frac{7\pi}{8}=\sqrt{\frac{\sqrt 2-1}{2\sqrt 2}}[/tex]

Step-by-step explanation:

We are given that

[tex] sin\frac{7\pi}{8}[/tex]

We have to find the exact value by using a half angle identity.

Half angle identity:

[tex] sin^2\theta=\frac{1-cos2\theta}{2}[/tex]

By using the formula

[tex]sin\frac{7\pi}{8}=\sqrt{\frac{1-cos2(\frac{7\pi}{8})}{2}}[/tex]

[tex]sin\frac{7\pi}{8}=\sqrt{\frac{1-cos\frac{7\pi}{4}}{2}}[/tex]

[tex]sin\frac{7\pi}{8}=\sqrt{\frac{1-cos(2\pi-\frac{\pi}{4})}{2}}[/tex]

[tex]sin\frac{7\pi}{8}=\sqrt{\frac{1-cos\frac{\pi}{4}}{2}}[/tex]

By using identity :[tex]cos(2\pi-\theta)=cos\theta[/tex]

[tex]sin\frac{7\pi}{8}=\sqrt{\frac{1-\frac{1}{\sqrt 2}}{2}}[/tex]

By using [tex] cos\frac{\pi}{4}=\frac{1}{\sqrt 2}[/tex]

[tex]sin\frac{7\pi}{8}=\sqrt{\frac{\sqrt 2-1}{2\sqrt 2}}[/tex]