Answer:
307.72 cubic in
Step-by-step explanation:
We are given that
Height of cone=24 in
Slant height of cone=25 in
We know that
Diameter, d=[tex]\sqrt{l^2-h^2}[/tex]
d=[tex]\sqrt{(25)^2-(24)^2}=\sqrt{49}=7 in[/tex]
Radius of cone=r=[tex]\frac{d}{2}=\frac{7}{2}in[/tex]
Volume of cone =[tex]\frac{1}{3}\pi r^2h[/tex]
Where [tex]\pi=3.14[/tex]
Using the formula
Volume of cone=[tex]\frac{1}{3}\times 3.14\times (\frac{7}{2})^2\times 24[/tex]
Volume of cone=307.72 cubic in