Answer:
-257478 N
-16092483.225 N
62.5
Explanation:
u = Initial velocity = 925 km/h
v = Final velocity = 0
s = Displacement
a = Acceleration
[tex]v^2-u^2=2as\\\Rightarrow a=\dfrac{v^2-u^2}{2s}\\\Rightarrow a=\dfrac{0^2-(\dfrac{925}{3.6})^2}{2\times 125}\\\Rightarrow a=-264.08\ m/s^2[/tex]
Force is given by
[tex]F=ma\\\Rightarrow F=975\times -264.08\\\Rightarrow F=-257478\ N[/tex]
The force applied is -257478 N
[tex]v^2-u^2=2as\\\Rightarrow a=\dfrac{v^2-u^2}{2s}\\\Rightarrow a=\dfrac{0^2-(\dfrac{925}{3.6})^2}{2\times 2}\\\Rightarrow a=-16505.111\ m/s^2[/tex]
[tex]F=ma\\\Rightarrow F=975\times -16505.111\\\Rightarrow F=-16092483.225\ N[/tex]
The force applied is -16092483.225 N
The ratio is
[tex]\dfrac{-16092483.225}{-257478}=62.5[/tex]
The ratio is 62.5