Which expression is equivalent to (4 x cubed) (2 x) Superscript negative 4? StartFraction 1 Over 4 x EndFraction StartFraction 4 Over x EndFraction StartFraction 8 Over x EndFraction StartFraction 128 Over x EndFraction

Respuesta :

Option c: [tex]\frac{1}{4 x}[/tex]

Step-by-step explanation:

The expression is [tex](4x^{3})(2x)^{-4}[/tex]

Applying the exponent rule, we have,

[tex]\frac{4x^{3} }{(2x)^{4} }[/tex]

Multiplying the denominator,

[tex]\frac{4x^{3} }{2^{4} x^{4} }[/tex]

Rewriting this expression,

[tex]\frac{4x^{3} }{16 x^{4} }[/tex]

Cancelling the common terms, we have,

[tex]\frac{1 }{4x }[/tex]

Thus, the expression equivalent to [tex](4x^{3})(2x)^{-4}[/tex] is [tex]\frac{1 }{4x }[/tex]

Answer:

A 1/4x

Step-by-step explanation: