Respuesta :

Answer:

m=2 and n=3

Step-by-step explanation:

Step :-

Given  [tex][ 2 x^{n}y^{2} ]^m = 4 x^6 y^4[/tex]

using algebraic formula [tex](a^m)^n= a^{mn}[/tex]

now

[tex]2^{m} x^{mn} y^{2m} = 4x^{6} y^{4}[/tex]

now equating 'x' powers, we get

[tex]x^{mn} = x^{6}[/tex]

[tex]mn=6[/tex] ....(1)

now

[tex]y^{2m} = y^{4}[/tex]

Equating 'y' powers ,we get

2 m=4

m=2

substitute m= 2 in equation (1)

we get

2 n=6

n=3

verification:-

substitute m=2 and n=3 , we get

[tex][ 2 x^{n}y^{2} ]^m = 4 x^6 y^4[/tex]

[tex](2 x^{3} y^2)^2 = 4 x^6 y ^4\\[/tex]

[tex]4 x^6 y^4 = 4 x^6 y^4[/tex]

both are equating so m= 2 and n=3