A record turntable rotates through 5.0 rad in 2.8 s as it is accelerated uniformly from rest. What is the angular velocity at the end of that time?

Respuesta :

Answer:

[tex]\omega_f = 3.584\ rad/s[/tex]

Explanation:

given,

turntable rotate to, θ = 5 rad

time, t = 2.8 s

initial angular speed  = 0 rad/s

final angular speed = ?

now, using equation of rotational motion

[tex]\theta = \omega_i t + \dfrac{1}{2}\alpha t^2[/tex]

[tex]5 = 0+ \dfrac{1}{2}\alpha\times 2.8^2[/tex]

[tex]\alpha= \dfrac{10}{2.8^2}[/tex]

       α = 1.28 rad/s²

now, calculation of angular velocity

[tex]\omega_f = \omega_i + \alpha t[/tex]

[tex]\omega_f =0 +1.28\times 2.8[/tex]

[tex]\omega_f = 3.584\ rad/s[/tex]

hence, the angular velocity at the end is equal to 3.584 rad/s

The angular velocity at the end of that time 10rad/s

In order to get the angular velocity [tex]\omega[/tex], we will use the equation of motion expressed as [tex]\omega = \omega_0 + \alpha t[/tex]

[tex]\alpha[/tex] is the angular acceleration

t is the time taken

[tex]\omega_0[/tex] is the initial angular velocity

Get the angular acceleration [tex]\alpha[/tex]

[tex]\theta = \omega_0 t+ \frac{1}{2} gt^2[/tex]

[tex]5=0+\frac{1}{2} \alpha (2.8)\\2\times5 = 2.8 \alpha \\10 = 2.8 \alpha\\\alpha = \frac{10}{2.8}\\\alpha = 3.57rad/s^2[/tex]

Get the angular velocity [tex]\omega[/tex]

[tex]\omega = \omega_0 + 3.57(2.8)\\\omega = 0+10\\\omega =10rad/s\\[/tex]

Hence the angular velocity at the end of that time 10rad/s

Learn more here: https://brainly.com/question/21278452