Tricia completed the square of the quadratic function f(x) = x² + 14x + 2 and determined the coordinates of the minimum value are (-7, - 47). Which equation must be Tricia's result?
f(x = (x +7)² + 47
f(x) = (x + 7)² - 47
f(x) = (x - 7)² + 47
f(x) = (x - 7)² - 47

Respuesta :

Answer:

The co-ordinates which give the minimum value for the quadratic function are (-7, -47)

Step-by-step explanation:

i) the quadratic function f(x) = [tex]x^{2}[/tex]  + 14x + 2

                                             = [tex]x^{2}[/tex]  +   14x + 49 - 49 + 2

                                             =  [tex](x + 7)^{2}[/tex]   - 49 + 2

                                            = [tex](x+7)^{2}[/tex]  - 47

ii) The minimum value of the result of the quadratic equation in i) will be achieved when [tex](x + 7)^{2}[/tex] is zero as any square value is always positive and thus the minimum value of a square is always zero.

iii) [tex](x + 7)^{2}[/tex]  is zero when x  = -7 and when x = -7  then y = f(x) = -47

iv) The co-ordinates which give the minimum value for the quadratic function are (-7, -47)