To solve this problem we will apply the concepts related to the kinematic equations of linear motion. From there we will define the distance as the circumference of the earth (approximate as a sphere). With the speed given in the statement we will simply clear the equations below and find the time.
[tex]R= 6370*10^3 m[/tex]
[tex]v = 239m/s[/tex]
[tex]a = 16.5m/s^2[/tex]
The circumference of the earth would be
[tex]\phi = 2\pi R[/tex]
Velocity is defined as,
[tex]v = \frac{x}{t}[/tex]
[tex]t = \frac{x}{v}[/tex]
Here [tex]x = \phi[/tex], then
[tex]t = \frac{\phi}{v} = \frac{2\pi (6370*10^3)}{239}[/tex]
[tex]t = 167463.97s[/tex]
Therefore will take 167463.97 s or 1 day 22 hours 31 minutes and 3.97seconds