Use the sample data and confidence level to construct the confidence interval estimate of the population proportion p. n equals 500 comma x equals 150 comma 95 % confidencen=500, x=150, 95% confidence nothingless than

Respuesta :

Answer:

(0.2599,0.3401)                                                

Step-by-step explanation:

We are given the following in the question:

Sample size, n = 500

x = 150

[tex]\hat{p} = \dfrac{x}{n} = \dfrac{150}{500} = 0.3[/tex]

Confidence interval:

[tex]\hat{p}\pm z_{stat}\sqrt{\dfrac{\hat{p}(1-\hat{p})}{n}}[/tex]

[tex]z_{critical}\text{ at}~\alpha_{0.05} = \pm 1.96[/tex]

Putting the values, we get:

[tex]0.3\pm 1.96\sqrt{\dfrac{0.3(1-0.3)}{500}} = 0.3 \pm 0.0401 =(0.2599,0.3401)[/tex]

The 95% confidence interval is (0.2599,0.3401).