Step-by-step explanation:
9.
Given that, the measure of [tex]\angle A[/tex] is [tex]45^\circ[/tex]. The measure of [tex]\angle B[/tex]is [tex]b^\circ[/tex]. The measure of[tex]\angle C[/tex] is [tex]3b^\circ[/tex] .
We know that the sum of all angles of triangle is [tex]180^\circ[/tex].
Therefore
[tex]45^\circ + b^\circ +3b^\circ =180^\circ[/tex]
⇔[tex]4b^\circ[/tex] = [tex]135^\circ[/tex]
10.
Given that , the measure of [tex]\angle X[/tex] and [tex]\angle Y[/tex]are same [tex]x^\circ[/tex]. The angle of [tex]\angle Z[/tex] is twice the measure of [tex]\angle Y[/tex].
∴[tex]\angle X[/tex]+[tex]\angle Y[/tex]+[tex]\angle Z[/tex]=[tex]180^\circ[/tex]
⇔[tex]x^\circ[/tex]+[tex]x^\circ[/tex]+2[tex]x^\circ[/tex]=[tex]180^\circ[/tex]
⇔4[tex]x^\circ[/tex]= [tex]180^\circ[/tex]