Respuesta :
Answer:
147.45 Hz
[tex]\Delta f=f_{Lr}-f_{Se}[/tex]
Explanation:
v = Speed of sound in water = 1482 m/s
[tex]v_w[/tex] = Speed of whale = 4.95 m/s
The difference in frequency is given by
[tex]\Delta f=f\dfrac{v+v_w}{v-v_w}-f\dfrac{v}{v-v_w}\\\Rightarrow \Delta f=f_{Lr}-f_{Se}[/tex]
Frequency of the wave in stationary condition
[tex]f_{Lr}=f\dfrac{v+v_w}{v-v_w}[/tex]
Ship's frequency which is reflected back
[tex]f_{Se}=f\dfrac{v}{v-v_w}[/tex]
[tex]f_{Se}=22\ kHz[/tex]
[tex]\mathbf{\Delta f=f_{Lr}-f_{Se}}[/tex]
[tex]\Delta f=f_{Lr}-f_{Se}\\\Rightarrow \Delta f=22\times \dfrac{1482+4.95}{1482-4.95}-22\\\Rightarrow \Delta f=0.14745\ kHz\\\Rightarrow \Delta f=147.45\ Hz[/tex]
The difference in wavelength is 147.45 Hz
The Difference in frequency Δf = 147.4 Hz
Expression for Δf in terms of the relevant frequencies ; Δf = fL[tex]_{r}[/tex] - fL[tex]_{s}[/tex]
Given data :
Speed of sound in water ( V ) = 1482 m/s
Speed of whale ( Vw ) = 4.95 m/s
Frequency of ship sonar ( f ) = 22.0 kHz
Calculate the difference in frequency
Δf = [tex]f\frac{v + v_{w} }{v - v_{w} } - f \frac{v}{v-v_{w} }[/tex] ------ ( 1 )
where :
- [tex]f \frac{v}{v-v_{w} }[/tex] = Frequency of ship ( F[tex]_{s}[/tex] ) = 22 kHz
- [tex]f\frac{v + v_{w} }{v - v_{w} }[/tex] = Frequency of wave when stationary ( FL[tex]_{r}[/tex] )
= 22 * [ ( 1482 + 4.95) / ( 1482 - 4.95 ) ]
= 22.1474 kHz.
Back to equation ( 1 )
Δf = 22.1474 - 22
= 0.1474 kHz ≈ 147.4 Hz
Hence we can conclude that the Difference in frequency Δf = 147.4 Hz and
Expression for Δf in terms of the relevant frequencies ; Δf = fL[tex]_{r}[/tex] - fL[tex]_{s}[/tex]
Learn more about frequency differences : https://brainly.com/question/615051