Respuesta :

Answer:

[tex]DC=\frac{8}{3}\ units[/tex]

Step-by-step explanation:

The picture of the question in the attached figure

we know that

The triangle ABD is an isosceles triangle

because

AB=BD

The segment BM is a perpendicular bisector segment AD

so

In the right triangle ABM

Applying the Pythagorean Theorem

[tex]BM^2=AB^2-AM^2[/tex]

we have

[tex]AB=5\ units\\AM=x\ units[/tex]

substitute

[tex]BM^2=5^2-x^2[/tex]

[tex]BM^2=25-x^2[/tex] -----> equation A

In the right triangle BMC

Applying the Pythagorean Theorem

[tex]BM^2=BC^2-MC^2[/tex]

we have

[tex]BC=7\ units\\MC=AC-AM=(9-x)\ units[/tex]

substitute

[tex]BM^2=7^2-(9-x)^2[/tex]

[tex]BM^2=49-(81-18x+x^2)[/tex]  

[tex]BM^2=49-81+18x-x^2[/tex]

[tex]BM^2=-x^2+18x-32[/tex] ----> equation B

equate equation A and equation B

[tex]-x^2+18x-32=25-x^2[/tex]

solve for x

[tex]18x=25+32\\18x=57\\\\x=\frac{57}{18}[/tex]

Simplify

[tex]x=\frac{19}{6}[/tex]

Find the length of DC

[tex]DC=AC-2x[/tex]

substitute the given values

[tex]DC=9-2(\frac{19}{6})[/tex]

[tex]DC=9-\frac{19}{3}\\\\DC=\frac{8}{3}\ units[/tex]

Ver imagen calculista