Answer:
The sound level is 138.97 dB.
Explanation:
Given that,
Sound level L= 145 dB
We need to calculate the intensity
Using formula of sound intensity
[tex]L=10\log(\dfrac{I}{I_{0}})[/tex]
Put the value into the formula
[tex]145=10\log(\dfrac{I}{I_{0}})[/tex]
[tex]\log(\dfrac{I}{I_{0}})=\dfrac{145}{10}[/tex]
[tex]\log(\dfrac{I}{I_{0}})=14.5[/tex]
[tex]\dfrac{I}{I_{0}}=10^{14.5}[/tex]
[tex]I=10^{14.5}\times I_{0}[/tex]
[tex]I=10^{14.5}\times10^{-12}[/tex]
[tex]I=316.2[/tex]
We need to calculate the noise of one engine
Using formula of intensity
[tex]I'=\dfrac{I}{4}[/tex]
Put the value into the formula
[tex]I'=\dfrac{316.2}{4}[/tex]
[tex]I'=79.05[/tex]
We need to calculate the intensity level due to one engine
Using formula of sound intensity
[tex]L'=10\log(\dfrac{I'}{I_{0}})[/tex]
[tex]L'=10\log(\dfrac{79.05}{10^{-12}})[/tex]
[tex]L'=138.97\ dB[/tex]
Hence, The sound level is 138.97 dB