Respuesta :

Answer:

[tex]g(x)=-4(\frac{1}{2})^x[/tex]

Step-by-step explanation:

Given:

The parent function is given as:

[tex]f(x)=4(\frac{1}{2})^x[/tex]

The function [tex]g(x)[/tex] is a reflection of the parent function about the x-axis.

Now, in order to find the function g(x), we need to use the rules of function transformations.

As per transformation rules, when a function is reflected about the x-axis, the function rule is given as:

[tex]f(x)\to-f(x)[/tex]

So, the new function or the reflected function is the negative of the original function.

Therefore, the reflected function [tex]g(x)[/tex] is given as:

[tex]g(x)=-f(x)\\\\g(x)=-4(\frac{1}{2})^x[/tex]

Hence, the function that represents the reflection of the given function across the x-axis is [tex]g(x)=-4(\frac{1}{2})^x[/tex]