Respuesta :

Answer:

see the explanation

The solution's table in the attached figure

Step-by-step explanation:

we know that

A relationship between two variables, x, and y, represent a proportional variation if it can be expressed in the form [tex]k=\frac{y}{x}[/tex] or [tex]y=kx[/tex]

Let

y ----> the price

x ----> the weight

Find the value of the proportionality constant for each ordered pair in each table

[tex]k=\frac{y}{x}[/tex]

If all the values of k are equal, then the table represents a proportional relationship between the variable x and the variable y

Table 1

For x=1.5 lb, y=$4.50 ---->  [tex]k=\frac{4.5}{1.50}=3[/tex]

For x=2 lb, y=$9.00 ---->  [tex]k=\frac{9.00}{2}=4.5[/tex]

The values of k are different

therefore

The table not represent a proportional relationship

Table 2

For x=10 g, y=$0.50 ---->  [tex]k=\frac{0.50}{10}=0.05[/tex]

For x=15 g, y=$0.55 ---->  [tex]k=\frac{0.55}{15}=0.04[/tex]

The values of k are different

therefore

The table not represent a proportional relationship

Table 3

For x=0.5 Kg, y=$0.75 ---->  [tex]k=\frac{0.75}{0.5}=1.5[/tex]

For x=5 g, y=$7.50 ---->  [tex]k=\frac{7.50}{5}=1.5[/tex]

The values of k are equal

therefore

The table represent a proportional relationship

Table 4

For x=1 oz, y=$2.00 ---->  [tex]k=\frac{2}{1}=2[/tex]

For x=2 lb, y=$4.00

Convert lb to oz

Remember that

1 lb=16 oz

so

2 lb=2(16)=32 oz

For x=32 lb, y=$4.00 ---->  [tex]k=\frac{4}{32}=0.125[/tex]

The values of k are different

therefore

The table not represent a proportional relationship

Ver imagen calculista