Answer:
[tex] 0.85 = P(C) + 0.75 -0.75 P(C)[/tex]
[tex]0.1 = 0.25 P(C)[/tex]
[tex] P(C) = 0.4[/tex]
Step-by-step explanation:
First we can define some notation useful:
C ="represent the event of incurring in operating charges"
R= represent the event of emergency rooms charges"
For this case we are interested on P(C) since they want "the probability that a claim submitted to the insurance company includes operating room charges."
We have some probabilities given:
[tex] P(R') = 0.25 , P(C \cup R) =0.85[/tex]
Solution to the problem
By the complement rule we have this:
[tex] P(R') = 0.25 =1-P(R)[/tex]
[tex] P(R) = 1-0.25 = 0.75[/tex]
Since the two events C and R are considered independent we have this:
[tex]P(C \cap R) = P(C) *P(R)[/tex]
Now we can use the total probability rule like this:
[tex] P(C \cup R) = P(C) + P(R) - P(R)*P(C)[/tex]
And if we replace we got:
[tex] 0.85 = P(C) + 0.75 -0.75 P(C)[/tex]
[tex]0.1 = 0.25 P(C)[/tex]
[tex] P(C) = 0.4[/tex]