Respuesta :

Answer:

The equation of line M in slope intercept form is    [tex]y=\frac{3}{2}x+1[/tex]

The equation of line M in standard form is  [tex]3x-2y=-2[/tex]

Step-by-step explanation:

step 1

Find the slope of line M

The formula to calculate the slope between two points is equal to

[tex]m=\frac{y2-y1}{x2-x1}[/tex]

we have the points

(2,4) and (0,1)

substitute

[tex]m=\frac{1-4}{0-2}[/tex]

[tex]m=\frac{-3}{-2}[/tex]

[tex]m=\frac{3}{2}[/tex]

step 2

Find the equation of the line M in point slope form

[tex]y-y1=m(x-x1)[/tex]

we have

[tex]m=\frac{3}{2}[/tex]

[tex]point\ (0,1)[/tex]

substitute

[tex]y-1=\frac{3}{2}(x-0)[/tex]

[tex]y-1=\frac{3}{2}x[/tex] ----> equation in point slope form

step 3

Find the equation of line M in slope intercept form

[tex]y=mx+b[/tex]

Isolate the variable y in the equation of the line in point slope form

[tex]y-1=\frac{3}{2}x[/tex]

Adds 1 both sides

[tex]y=\frac{3}{2}x+1[/tex]

step 4

Find the equation of the line M in standard form

[tex]Ax+By=C[/tex]

where

A is a positive integer

B and C are integers

we have

[tex]y=\frac{3}{2}x+1[/tex]

Multiply by 2 both sides

[tex]2y=3x+2[/tex]

[tex]3x-2y=-2[/tex] ---> equation in standard form