Answer:
[tex]Y_{c}=0.7415m[/tex]
Explanation:
General Formula for calculating the critical Depth is:
[tex]Y_{c}=\frac{V^{2} }{g*A_{c}^{2}}[/tex] Eq(1)
where:
V is the volume flow rate
g is gravitational acceleration i.e 9.81 m/s^2
A_c is the critical area
In case of Rectangular channel:
[tex]A_{c} =w*y_{c}[/tex]
where:
w is the width
In case of Rectangular channel Eq (1) will become:
[tex]Y_{c}=(\frac{V^{2} }{g*w^{2} } )^{\frac{1}{3} }[/tex]
[tex]Y_{c}=(\frac{12^{2} }{9.81*6^{2} } )^{\frac{1}{3} }[/tex]
[tex]Y_{c}=0.7415m[/tex]
Actual depth i.e Y < Critical depth i.e Y_c
Flow is Supercritical