Find a power series representation for the function. (Assume a > 0.) (Give your power series representation centered at x = 0.) f(x) = x3 a6 − x6

Respuesta :

Answer:

Power series representation of given f(x) is [tex]\sum^{\infty}_{n=0}(-1)^{n}(\frac{x^{6n+3}}{a^{6n+6}})[/tex]

Step-by-step explanation:

Given that:

                    [tex]f(x)=\frac{x^{3}}{a^{6}-x^{6}}[/tex] --- (1)

writing it in form [tex]f(x)=\frac{1}{1-x}[/tex] for which power series is:

                    [tex]\frac{1}{1-x}=\sum^{\infty}_{n=0}(-1)^{n}x^{n}[/tex]---(2)

                    [tex]f(x)=\frac{x^{3}}{a^{6}}\frac{1}{1-\frac{x^{6}}{a^{6}}}[/tex] --- (3)

consider:

                    [tex]u=\frac{x^{6}}{a^{6}}[/tex]

substituting above eq. in (3)

                    [tex]f(x)=\frac{x^{3}}{a^{6}}\frac{1}{1-u}[/tex]

Expanding[tex] \frac{1}{1-u}[/tex] using (2)

                    [tex]=\frac{x^{3}}{a^{6}}\sum^{\infty}_{n=0}(-1)^{n}u^{n}[/tex]

Back-substituting value of u in above

                   [tex]=\frac{x^{3}}{a^{6}}\sum^{\infty}_{n=0}(-1)^{n}(\frac{x^{6}}{a^{6}})^{n}\\=\sum^{\infty}_{n=0}(-1)^{n}(\frac{x^{6n+3}}{a^{6n+6}})[/tex]