Respuesta :

The expression into a single logarithm is [tex]log[(x)^{10}][(2)^{30}][/tex]

Step-by-step explanation:

Let us revise some logarithmic rules

  • [tex]log(a)^{n}=nlog(a)[/tex]
  • [tex]log(ab)=log(a)+log(b)[/tex]
  • [tex]nlog(a)+mlog(b)=log[(a)^{n}][(b)^{m}][/tex]

∵ 10 log(x) + 5 log(64)

- At first re-write 10 log(x)

∴  10 log(x) = [tex]log(x)^{10}[/tex]

- Then re-write 5 log(64)

∴  5 log(64) = [tex]log(64)^{5}[/tex]

∴ 10 log(x) + 5 log(64) = [tex]log(x)^{10}[/tex] + [tex]log(64)^{5}[/tex]

- Use the 3rd rule above to make it single logarithm

∵ [tex]log(x)^{10}[/tex] + [tex]log(64)^{5}[/tex] = [tex]log[(x)^{10}][(64)^{5}][/tex]

∴ 10 log(x) + 5 log(64) = [tex]log[(x)^{10}][(64)^{5}][/tex]

∵ 64 = 2 × 2 × 2 × 2 × 2 × 2

∴ We can write 64 as [tex]2^{6}[/tex]

∴ [tex](64)^{5}=(2^{6})^{5}[/tex]

- Multiply the two powers of 2

∴ [tex](64)^{5}=(2)^{30}[/tex]

∴ 10 log(x) + 5 log(64) = [tex]log[(x)^{10}][(2)^{30}][/tex]

The expression into a single logarithm is [tex]log[(x)^{10}][(2)^{30}][/tex]

Learn more:

You can learn more about the logarithmic functions in brainly.com/question/11921476

#LearnwithBrainly