A 1 036-kg satellite orbits the Earth at a constant altitude of 98-km. (a) How much energy must be added to the system to move the satellite into a circular orbit with altitude 198 km? MJ (b) What is the change in the system's kinetic energy? MJ (c) What is the change in the system's potential energy?

Respuesta :

Answer:

a) The Energy added should be 484.438 MJ

b) The  Kinetic Energy change is -484.438 MJ

c) The Potential Energy change is 968.907 MJ

Explanation:

Let 'm' be the mass of the satellite , 'M'(6×[tex]10^{24}[/tex] be the mass of earth , 'R'(6400 Km) be the radius of the earth , 'h' be the altitude of the satellite and 'G' (6.67×[tex]10^{-11}[/tex] N/m) be the universal constant of gravitation.

We know that the orbital velocity(v) for a satellite -

v=[tex]\sqrt{\frac{Gmm}{R+h} }[/tex]         [(R+h) is the distance of the satellite   from the center of the earth ]

Total Energy(E) = Kinetic Energy(KE) + Potential Energy(PE)

For initial conditions ,

h = [tex]h_{i}[/tex] = 98 km = 98000 m

∴Initial Energy ([tex]E_{i}[/tex])  = [tex]\frac{1}{2}[/tex]m[tex]v^{2}[/tex] + [tex]\frac{-GMm}{(R+h_{i} )}[/tex]

Substituting v=[tex]\sqrt{\frac{GMm}{R+h_{i} } }[/tex] in the above equation and simplifying we get,

[tex]E_{i}[/tex] = [tex]\frac{-GMm}{2(R+h_{i}) }[/tex]

Similarly for final condition,

h=[tex]h_{f}[/tex] = 198km = 198000 m

∴Final Energy([tex]E_{f}[/tex]) = [tex]\frac{-GMm}{2(R+h_{f}) }[/tex]

a) The energy that should be added should be the difference in the energy of initial and final states -

∴ ΔE = [tex]E_{f}[/tex] - [tex]E_{i}[/tex]

        = [tex]\frac{GMm}{2}[/tex]([tex]\frac{1}{R+h_{i} }[/tex] - [tex]\frac{1}{R+h_{f} }[/tex])

Substituting ,

M = 6 × [tex]10^{24}[/tex] kg

m = 1036 kg

G = 6.67 × [tex]10^{-11}[/tex]

R = 6400000 m

[tex]h_{i}[/tex] = 98000 m

[tex]h_{f}[/tex] = 198000 m

We get ,

ΔE = 484.438 MJ

b) Change in Kinetic Energy (ΔKE) = [tex]\frac{1}{2}[/tex]m[[tex]v_{f} ^{2}[/tex] - [tex]v_{i} ^{2}[/tex]]

                                                          = [tex]\frac{GMm}{2}[/tex][[tex]\frac{1} {R+h_{f} }[/tex] - [tex]\frac{1} {R+h_{i} }[/tex]]

                                                          = -ΔE                                                            

                                                          = - 484.438 MJ

c)  Change in Potential Energy (ΔPE) = GMm[[tex]\frac{1}{R+h_{i} }[/tex] - [tex]\frac{1}{R+h_{f} }[/tex]]

                                                             = 2ΔE

                                                             = 968.907 MJ