Respuesta :
- 187.237 km/hr fast is θ changing 12 min after the plane passes over the radar station
Explanation:
Let the distance x and angle θ be defined as in the figure below. Then
[tex]\tan \theta=\frac{6}{x}[/tex]
Now, differentiate with respect to t, we get
[tex]\sec ^{2} \theta \frac{d \theta}{d t}=-\left(\frac{6}{x^{2}}\right) \frac{d x}{d t}[/tex]
Now, calculate the travel distance from radar station to plane after 12min
Distance, [tex]x=800 \times \frac{12}{60}=160[/tex]
Substituting ‘x’ value, we get
[tex]\tan \theta=\frac{6}{160}=\frac{3}{80}[/tex]
Find the rate of change of theta after 12 min,
[tex]\frac{d \theta}{d t}=-\frac{1}{\sec ^{2} \theta} \times \frac{6}{x^{2}} \times \frac{d x}{d t}[/tex]
We know, the formula for,
[tex]\sec ^{2} \theta=1+\tan ^{2} \theta=1+\frac{3^{2}}{80^{2}}[/tex]
So, then, [tex]\frac{d x}{d t}=800 \mathrm{km} / \mathrm{hr}(\text { let assume })[/tex]
[tex]\frac{d \theta}{d t}=-\frac{1}{\left(1+\frac{3^{2}}{80^{2}}\right)} \times \frac{6}{160^{2}} \times 800[/tex]
[tex]=-\frac{1}{\left(1+\frac{3^{2}}{80^{2}}\right)} \times \frac{6}{160^{2}} \times 800[/tex]
[tex]=-\frac{1}{1.0014} \times \frac{6}{25600} \times 800[/tex]
[tex]=-\frac{4800}{25635.84}=-0.187237 \mathrm{rad} / \mathrm{hr}[/tex]
When express the value in km/he, we get, the change in theta as
[tex]=-187.237 \mathrm{km} / \mathrm{hr}[/tex]

The rate of change of the radar station 12 minutes after the plane passes over the radar station is approximately [tex]-4.982\times 10^{-3}[/tex] radians per minute.
How to find the rate of change of the angle of the radar station
The geometric diagram of the situation of the plane is shown below. The angle of the radar station ([tex]\theta[/tex]), in radians, is represented by the following trigonometric expression:
[tex]\tan \theta = \frac{y}{x}[/tex] (1)
Where:
- [tex]x[/tex] - Horizontal distance of the plane, in kilometers
- [tex]y[/tex] - Height of the plane, in kilometers
Since we know that [tex]h[/tex] is constant and the plane travels at constant speed, then we have the following expression for the rate of change of the radar station ([tex]\dot \theta[/tex]), in radians per minute:
[tex]\sec^{2}\theta\cdot \dot \theta = -\frac{y\cdot\dot x}{x^{2}}[/tex]
[tex](\tan^{2}\theta +1)\cdot \dot \theta = -\frac{y\cdot \dot x}{(\dot x\cdot t)^{2}}[/tex]
[tex]\left(\frac{y^{2}}{x^{2}}+1 \right) \cdot \dot \theta = -\frac{y}{\dot x\cdot t^{2}}[/tex]
[tex]\left(\frac{y^{2}}{\dot x^{2}\cdot t^{2}} +1\right)\cdot \dot \theta = -\frac{y}{\dot x\cdot t^{2}}[/tex]
[tex]\left(\frac{y^{2}+\dot x^{2}\cdot t^{2}}{\dot x^{2}\cdot t^{2}} \right)\cdot \dot \theta = -\frac{y}{\dot x\cdot t^{2}}[/tex]
[tex](y^{2}+\dot x^{2}\cdot t^{2})\cdot \dot \theta = -y\cdot \dot x[/tex]
[tex]\dot \theta = -\frac{y\cdot \dot x}{y^{2}+\dot x^{2}\cdot t^{2}}[/tex] (2)
Where [tex]t[/tex] is the time, in minutes.
If we know that [tex]y = 6\,km[/tex], [tex]\dot x = 8.333\,\frac{km}{min}[/tex] and [tex]t = 12\,min[/tex], then the rate of change of the angle of the radar station is:
[tex]\dot \theta = -\frac{(6\,km)\cdot \left(8.333\,\frac{km}{min} \right)}{(6\,km)^{2}+\left(8.333\,\frac{km}{min} \right)^{2}\cdot (12\,min)^{2}}[/tex]
[tex]\dot \theta \approx -4.982\times 10^{-3}\,\frac{rad}{min}[/tex]
The rate of change of the radar station 12 minutes after the plane passes over the radar station is approximately [tex]-4.982\times 10^{-3}[/tex] radians per minute. [tex]\blacksquare[/tex]
Remark
The plane speed is missing (500 kilometers per hour).
To learn more on rates of change, we kindly invite to check this verified question: https://brainly.com/question/11606037
