Given that ΔABC ≅ ΔDEF, m∠A = 70°, m∠B = 60°, m∠C = 50°,m∠D = (3x + 10)°, m∠E= (1/3y + 20)°, and m∠F = (z2 + 14)°, find the values of x and y.

Respuesta :

Answer:

Value of x is 20 and y is 120.

Step-by-step explanation:

Given,

m∠A = 70°, m∠B = 60°, m∠C = 50°,m∠D = (3x + 10)°, m∠E= (1/3y + 20)°, and m∠F = (z² + 14)°

Also,

ΔABC ≅ ΔDEF,

Since, the corresponding parts of congruent triangles are always congruent or equal.

⇒ m∠A = m∠D, m∠B = m∠E and m∠C = m∠F

When m∠A = m∠D

[tex]\implies 70 = 3x + 10[/tex]

[tex]70 - 10 = 3x[/tex]

[tex]60 = 3x[/tex]

[tex]\implies x =\frac{60}{3}=20[/tex]

When, m∠B = m∠E,

[tex]\implies 60 = \frac{1}{3}y + 20[/tex]

[tex]60 - 20 =\frac{1}{3}y[/tex]

[tex]40 =\frac{1}{3}y[/tex]

[tex]\implies y =3\times 40=120[/tex]