A puck of mass 0.5100.510kg is attached to the end of a cord 0.827m long. The puck moves in a horizontal circle without friction. If the cord can withstand a maximum tension of 126N, what is the highest frequency at which the puck can go around the circle without the cord breaking?

Respuesta :

Answer:2.74 Hz

Explanation:

Given

mass Puck [tex]m=0.51 kg[/tex]

length of cord [tex]L=0.827 m[/tex]

Maximum Tension in chord [tex]T=126 N[/tex]

as the Puck is moving in a horizontal circle so maximum Tension in the string will be equal to centripetal force

[tex]F_c=m\omega ^2L=T[/tex]

[tex]126=0.51\times (\omega )^2\times 0.827[/tex]

[tex]\omega =\sqrt{298.74}[/tex]

[tex]\omega =17.28 rad/s[/tex]

[tex]\omega =2\pi f[/tex]

[tex]f=\frac{2\pi }{\omega }[/tex]

[tex]f=2.74 Hz[/tex]