In the industrial "chlor-alkali" process, pure chlorine and sodium hydroxide are produced by electrolyzing brine, essentially an aqueous solution of sodium chloride.

Suppose a current of 18.0 A is passed through an aqueous solution of NaCl for 67.0 seconds.

Calculate the mass of pure chlorine produced.

Be sure your answer has a unit symbol and the correct number of significant digits.

Respuesta :

Answer:

0.443 g

Explanation:

In the electrolysis of an aqueous solution of NaCl, the following half-reactions take place:

Reduction: Na⁺(aq) + 1 e⁻ ⇒ Na(s)

Oxidation: 2 Cl⁻(aq) ⇒ Cl₂(g) + 2 e⁻

Let's consider the following relations:

  • 1 A = 1 c/s
  • 1 mole of e⁻ has a charge of 96468 c (Faraday's constant)
  • 1 mole of Cl₂(g) is released when 2 moles of e⁻ circulate
  • The molar mass of Cl₂ is 70.9 g/mol

Suppose a current of 18.0 A is passed through an aqueous solution of NaCl for 67.0 seconds. The mass of chlorine produced is:

[tex]67.0s.\frac{18.0c}{s} .\frac{1mole^{-} }{96468c} .\frac{1molCl_{2}}{2mole^{-} } .\frac{70.9gCl_{2}}{1molCl_{2}} =0.443gCl_{2}[/tex]