Respuesta :

Answer:

(c)  For p = 15,  [tex]4x^2-p(x)+7[/tex] leaves a remainder of -2 when divided by (x-3).

Step-by-step explanation:

Here,  The dividend expression is  [tex]4x^2-p(x)+7[/tex] = E(x)

The Divisor = (x-3)

Remainder  = -2

Now, by REMAINDER THEOREM:

Dividend  = (Divisor x Quotient)  + Remainder

If ( x -3 ) divides the given polynomial with a remainder -2.

⇒  x = 3  is a  solution of given polynomial E(x)  - (-2) =  

[tex]E(x)  - (-2)  = 4x^2-p(x)+7 -(-2)  = 4x^2-p(x)+9[/tex] =  S(x)

Now, S(3) = 0

⇒[tex]4x^2-p(x)+9 = 4(3)^2 - p(3) + 9 = 0\\\implies 36 - 3p + 9 = 0\\\implies 45= 3p , \\or p  =15[/tex]

or, p =1 5

Hence, for p = 15,  [tex]4x^2-p(x)+7[/tex] leaves a remainder of -2 when divided by (x-3).