A 5.00-g bullet is shot through a 1.00-kg wood block suspended on a string 2.00 m long. The center of mass of the block rises a distance of 0.38 cm. Find the speed of the bullet as it emerges from the block if its initial speed is 450 m/s

Respuesta :

Answer:395.6 m/s

Explanation:

Given

mass of bullet [tex]m=5 gm[/tex]

mass of wood block [tex]M=1 kg[/tex]

Length of string [tex]L=2 m[/tex]

Center of mass rises to an height of [tex]0.38 cm[/tex]

initial velocity of bullet [tex]u=450 m/s[/tex]

let [tex]v_1[/tex] and [tex]v_2[/tex] be the velocity of bullet and block after collision

Conserving momentum

[tex]mu=mv_1+Mv_2[/tex] -------------1

Now after the collision block rises to an height of 0.38 cm

Conserving Energy for block

kinetic energy of block at bottom=Gain in Potential Energy

[tex]\frac{Mv_2^2}{2}=Mgh_{cm}[/tex]

[tex]v_2=\sqrt{2gh_{cm}} [/tex]

[tex]v_2=\sqrt{2\times 9.8\times 0.38}[/tex]

[tex]v_2=0.272 m/s[/tex]

substitute the value of [tex]v_2[/tex] in equation 1

[tex]5\times 450=5\times v_1+1000\times 0.272[/tex]

[tex]v_1=395.6 m/s[/tex]

Otras preguntas