A toy cannon uses a spring to project a 5.35-g soft rubber ball. The spring is originally compressed by 5.08 cm and has a force constant of 8.07 N/m. When the cannon is fired, the ball moves 16.0 cm through the horizontal barrel of the cannon, and the barrel exerts a constant friction force of 0.033 0 N on the ball.
(a) With what speed does the projectile leave the barrel of the cannon? m/s
(b) At what point does the ball have maximum speed? cm (from its original position)
(c) What is this maximum speed? m/s

Respuesta :

Answer:

a) the velocity is v=1.385 m/s

b) the ball has its maximum speed at 4.68 cm away from its compressed position

c)  the maximum speed is 1.78 m/s

Explanation:

if we do an energy balance over the ball, the potencial energy given by the compressed spring is converted into kinetic energy and loss of energy due to friction, therefore

we can formulate this considering that the work of the friction force is equal to to the energy loss of the ball

W fr = - ΔE = - ΔU - ΔK = Ui - Uf + Kf - Ki

therefore

Ui + Ki = Uf + Kf + W fr  

where U represents potencial energy of the compressed spring , K is the kinetic energy W fr is the work done by the friction force. i represents inicial state, and f final state.

since

U= 1/2 k x² , K= 1/2 m v²  , W fr = F*L

X= compression length , L= horizontal distance covered

therefore

Ui + Ki = Uf + Kf + W fr

1/2 k xi² + 1/2 m vi² = 1/2 k x² + 1/2 m vf² + F*L

a) choosing our inicial state as the compressed state , the initial kinetic energy is Ki=0 and in the final state the ball is no longer pushed by the spring thus Uf=0

1/2 k X² + 0 = 0 + 1/2 m v² + F*L

1/2 m v² = 1/2 k X² - F*L

v = √[(k/m)x² -(2F/m)*L] = √[(8.07N/m/5.35*10^-3 Kg)*(-0.0508m)² -(2*0.033N/5.35*10^-3 Kg)*(0.16 m)] = 1.385 m/s

b) in any point x , and since L= d-(X-x) , d = distance where is no pushed by the spring.

1/2 k X² + 0 = 1/2 k x² + 1/2 m v² + F*[d-(X+x)]

1/2 m v² =1/2 k X²-1/2 k x² - F*[d-(X-x)] = (1/2 k X²+ F*X) - 1/2k x² - F*x + F*d

taking the derivative

dKf/dx = -kx - F = 0 → x = -F/k = -0.033N/8.07 N/m = -4.089*10^-3 m = -0.4cm

at x m = -0.4 cm the velocity is maximum

therefore is 5.08 cm-0.4 cm=4.68 cm away from the compressed position

c) the maximum speed is

1/2 m v max² = (1/2 k X²+ F*X) - 1/2k x m² - F*(x m) + 0

v =√[ (k/m) (X²-xm²) + (2F/m)(X-xm) ] = √[(8.07N/m/5.35*10^-3 Kg)*[(-0.0508m)² - (-0.004m)²] + (2*0.033N/5.35*10^-3 Kg)*(-0.0508m-(-0.004m)] = 1.78 m/s