The monthly starting salaries of students who receive an MBA degree have a population standard deviation of $120. What sample size should be selected to obtain a .95 probability of estimating the population mean monthly income within a margin of $20? [sample size]

Respuesta :

Answer:

138

Step-by-step explanation:

Population standard deviation = [tex]\sigma = 120[/tex]

.95 probability of estimating the population mean monthly income within a margin of $20

So, Significance level = 1-0.95 = 0.05

α =0.05

Margin error = 20

[tex]ME =Z \times \frac{\sigma}{\sqrt{n}}[/tex]

Z at 0.05 = 1.96

[tex]20 =1.96 \times \frac{120}{\sqrt{n}}[/tex]

[tex]\sqrt{n} =1.96 \times \frac{120}{20}[/tex]

[tex]n =(1.96 \times \frac{120}{20})^2[/tex]

[tex]n =138.2976[/tex]

So, n = 138

Hence sample size should be 138 selected to obtain a .95 probability of estimating the population mean monthly income within a margin of $20