A bucket is 20cm in diameter at the top, and 14cm in diameter at the bottom and 15cm deep.
Calculate the:
A. Capacity of the bucket in litres
B. Curved surface area of the bucket

Respuesta :

Answer:

A ) Capacity of the bucket = 3.441 liters

B )  Curved surface area of the bucket = 53.38 cm²

Step-by-step explanation:

Given in question as,

Diameter (D) of top of bucket = 20 cm  , So Radius ( R ) = [tex]\frac{D}{2}[/tex] = 10 cm

Diameter (d) of bottom of bucket = 14 cm , So r = [tex]\frac{14}{2}[/tex] = 7 cm

Depth of bucket = 15 cm

So, from given values it is clear that bucket shape is of FRUSTUM

A ) From the above data , the volume of frustum is calculated

So,Volume of frustum = [tex]\frac{1}{3}[/tex] × [tex]\pi[/tex] × h ×( R² + r² +R ×r )

i,e Volume = [tex]\frac{1}{3}[/tex] × [tex]\pi[/tex] × 15 ×( 10² + 7² + 10×7 )

So, Volume = [tex]\frac{110}{7}[/tex] × 219 = 3441.42 cm³ = 3.441 liters

Now covert this value in liters

∵ 1 cm³ = 0.001 liter

So, 3441042 cm³ = 3.441 liters

B) Curved surface Area = [tex]\pi[/tex] (R + r)

       CSA                         = [tex]\pi[/tex] ( 10 + 7)

       CSA                        = 3.14 × 17 = 53.38 cm²

Hence The capacity of frustum is 3.441 liters and The curved surface area = 53.38 cm²  Answer