Respuesta :

[tex]y\textrm{ }=\textrm{ }(\frac{x\textrm{ }+\textrm{ }4}{3} )^{\frac{1}{5} }[/tex]

Step-by-step explanation:

   Given function [tex]y\textrm{ }=\textrm{ }3x^{5}\textrm{ }-\textrm{ }4[/tex]

   To find an inverse for any given function, which is of the form [tex]y=f(x)[/tex], always swap [tex]x[/tex] and [tex]y[/tex] in the equation and try to get the form  [tex]x=f(y)[/tex]. Now, swapping back [tex]x[/tex] and [tex]y[/tex], we get the inverse function.

   On swapping [tex]x[/tex] and [tex]y[/tex], we get [tex]x\textrm{ }=\textrm{ }3y^{5}\textrm{ }-\textrm{ }4[/tex]

[tex]y\textrm{ }+\textrm{ }4\textrm{ }=\textrm{ }3x^{5}[/tex]

[tex]x^{5}\textrm{ }=\textrm{ }\frac{y\textrm{ }+\textrm{ }4}{3}[/tex]

[tex]x\textrm{ }=\textrm{ }(\frac{y\textrm{ }+\textrm{ }4}{3} )^{\frac{1}{5} }[/tex]

   Swapping back [tex]x[/tex] and [tex]y[/tex], we get [tex]y\textrm{ }=\textrm{ }(\frac{x\textrm{ }+\textrm{ }4}{3} )^{\frac{1}{5} }[/tex]

   This is the inverse function.