Water flowed out of a tank at a steady rate. A total of 18 1/2 gallons flowed out of the tank in 4 1/4 hours. Which expression
determines the quantity of water leaving the tank pWe hour

Respuesta :

Answer:

In 1 hour water flowed out = [tex]\frac{74}{17}[/tex]  gallons

Step-by-step explanation:

Given as ,

The quantity of water flowed out of tank =  18 [tex]\frac{1}{2}[/tex] gallons

                                                                   =    [tex]\frac{37}{2}[/tex] gallons

The time spend in flowing water out of tank = 4  [tex]\frac{1}{4}[/tex] hours

                                                                          =    [tex]\frac{17}{4}[/tex] hours

∵ In  [tex]\frac{17}{4}[/tex] hours , water flowed out =  [tex]\frac{37}{2}[/tex]

∴ In    1    hours                           ,  water flowed out = [tex]\frac{37\times4}          {17\times2}[/tex]

So, in 1 hour water flowed out = [tex]\frac{74}{17}[/tex]  gallons Answer

Answer:

The tank flowed out [tex]4\frac{6}{17}[/tex] gallons per hour.

Step-by-step explanation:

We know that

The tank flowed out [tex]18\frac{1}{2}[/tex] gallons in [tex]4\frac{1}{4}[/tex] hours.

To find the ratio of change, that is, the number of gallons per hour, we just need to divide these quantities as follows

[tex]18\frac{1}{2} \div 4\frac{1}{4}=\frac{37}{2}\div \frac{17}{4}=\frac{37}{2}\times \frac{4}{17}=\frac{148}{34}=\frac{74}{17} =4\frac{6}{17}[/tex]

Therefore,

the tank flowed out [tex]4\frac{6}{17}[/tex] gallons per hour.