Respuesta :
If you would like to solve -5x^2 * (4x - 6x^2 - 3), you can do this using the following steps:
-5x^2 * (4x - 6x^2 - 3) = (-5x^2) * 4x - (-5x^2) * 6x^2 - (-5x^2) * 3 = -20x^3 + 30x^4 + 15x^2 = 30x^4 - 20x^3 + 15x^2
The correct result would be 30x^4 - 20x^3 + 15x^2.
-5x^2 * (4x - 6x^2 - 3) = (-5x^2) * 4x - (-5x^2) * 6x^2 - (-5x^2) * 3 = -20x^3 + 30x^4 + 15x^2 = 30x^4 - 20x^3 + 15x^2
The correct result would be 30x^4 - 20x^3 + 15x^2.
Answer:
Option A is correct
[tex]30x^4-20x^3+15x^2[/tex]
Step-by-step explanation:
The distributive property says that:
[tex]a \cdot (x +y +z) = a\cdot x+ a\cdot y+ a\cdot z[/tex]
Given the expression: [tex]5x^2(4x-6x^2-3)[/tex]
Using distributive property :
[tex]-5x^2 \cdot (4x) - 5x^2 \cdot (-6x^2) -5x^2 \cdot (-3)[/tex]
Use: [tex]x^a \cdot x^b = x^{a+b}[/tex]
then;
[tex]-20x^3+30x^4+15x^2[/tex]
or
[tex]30x^4-20x^3+15x^2[/tex]
Therefore, the correct simplification of the given expression is [tex]30x^4-20x^3+15x^2[/tex]