Respuesta :

[tex]3 x^{2} + x + 10 = 0 [/tex]
[tex]x = \frac{-b(+or-) \sqrt{ b^{2} - 4ac } }{2a} [/tex]
[tex]x = \frac{-1(+or-) \sqrt{ 1^{2} - 4(3)(10) } }{2(3)} [/tex]
: . x =  \frac{-1 +  \sqrt{-119} }{6}   OR   [tex]x = \frac{-1 - \sqrt{-119} }{6}[/tex]

Thus the roots or the solutions to this equation are imaginary because the discriminant [tex] \sqrt{-119} [/tex] is negative and a negative number is undefined when rooted.