The series in the He+He+ spectrum that corresponds to the set of transitions where the electron falls from a higher level to the ????f=4nf=4 state is called the Pickering series, an important series in solar astronomy. Calculate the Pickering series wavelength associated with the excited state ????i=8ni=8 .

Respuesta :

Explanation:

According to the Rydberg formula,

        [tex]\frac{1}{\lambda} = -R_{H}Z^{2} [\frac{1}{n^{2}_{i}} - \frac{1}{n^{2}_{f}}][/tex]

where,        [tex]\lambda[/tex] = wavelength

                  [tex]R_{H}[/tex] = Rydberg constant = [tex]1.097 \times 10^{7} m^{-1}[/tex]

                  Z = atomic number (for He atomic number is 2)

               [tex]n_{f}[/tex] = 4,      [tex]n_{i}[/tex] = 8

Hence, putting the given values into the above formula as follows.

              [tex]\frac{1}{\lambda} = -R_{H}Z^{2} [\frac{1}{n^{2}_{i}} - \frac{1}{n^{2}_{f}}][/tex]

                              = [tex]-1.097 \times 10^{7} \times (2)^{2} [\frac{1}{(8)^{2}} - \frac{1}{(4)^{2}}][/tex]    

                             = [tex]0.2056 \times 10^{7} m^{-1}[/tex]

                [tex]\lambda = \frac{1}{0.2056 \times 10^{7} m^{-1}}[/tex]

                            = [tex]4.86 \times 10^{-7} m[/tex]

                            = 486 nm               (as [tex]1 \times 10^{-9}[/tex] = 1 nm)

Thus, we can conclude that the Pickering series wavelength associated with the excited state is 486 nm.