Respuesta :

Answer:

C

Step-by-step explanation:

The average rate of change of f(x) in the closed interval [ a, b ] is

[tex]\frac{f(b)-f(a)}{b-a}[/tex]

Here [ a, b ] = [ - 10, 10 ], thus

f(b) = f(10) = 10² + 9(10) + 18 = 100 + 90 + 18 = 208

f(a) = f(- 10) = (- 10)² + 9(- 10) + 18 = 100 - 90 + 18 = 28, thus

average rate of change = [tex]\frac{208-28}{10-(-10)}[/tex] = [tex]\frac{180}{20}[/tex] = 9