Please Help me PLLLEEEAAASSSEEEEE

The coordinates of the vertices of quadrilateral GOLF are G(3, -1), O(1, -6), L(-4, -4), and F(-2, 1). Prove or disprove that the quadrilateral is a square.

Identify the characteristics of a square (there are 3). Use algebra to discover if this quadrilateral has those characteristics, or not.

Respuesta :

Answer:

A quadrilateral become square if all the sides joining the co-ordinate of quadrilateral is equal

Step-by-step explanation:

Here the given co-ordinate of quadrilateral are

G (3, -1)                  O(1, -6)

L(-4, -4)                  F(-2, 1)

Line GF = [tex]\sqrt{(3+2)^2+(-1-1)^2}[/tex]

       GF = [tex]\sqrt{29}[/tex]

Similarly for line OG, OL, FL

      OG = [tex]\sqrt{(1-3)^2 +(-6+1)^2[/tex]

      OG = [tex]\sqrt{29}[/tex]

     

      OL = [tex]\sqrt{(-4-1)^2+(-6+4)^2}[/tex]

      OL = [tex]\sqrt{29}[/tex]

And

      FL = [tex]\sqrt{(-4+2)^} +(-4+1)^2[/tex]

      FL = [tex]\sqrt{29}[/tex]

all the sides of quadrilateral GF,  OG, OL, FL all equal to [tex]\sqrt{29}[/tex]

As all the sides are equal so quadrilateral become square      Answer