contestada


Suppose p(x) = x^3-2x^2 + 13x + k. The remainder of the division of p(x) by (x + 1) is-8. What is
the remainder of the division of p(x) by (x - 1)?
A.-8
B. 8
C. 16
D. 20​

Respuesta :

Answer:

D. 20

Step-by-step explanation:

Use long division to find k:

[tex]\phantom{x+1)x^{3}-2}x^{2}-\ 3x+16\\x+1)\overline{x^{3}-2x^{2}+13x+k}\\\phantom{x+1)}x^{3}+\ x^{2}\\\phantom{x+1)}\overline{\phantom{x^{3}}-3x^{2}}+13x\\\phantom{x+1)x^{3}}-3x^{2}-\ 3x\\\phantom{x+1)x^{3}}\overline{\phantom{-4x^{2}-\ \ }16x}+k\\\phantom{x+1)x^{3}-2x^{2}+\ }16x+16\\\phantom{x+1)x^{3}-2x^{2}-\ }\overline{\phantom{17x+\ }k-16}[/tex]

The remainder is -8, so:

k − 16 = -8

k = 8

Use long division to find the new remainder:

[tex]\phantom{x+1)x^{3}-2}x^{2}-\ \ \ x+12\\x-1)\overline{x^{3}-2x^{2}+13x+8}\\\phantom{x+1)}x^{3}-\ x^{2}\\\phantom{x+1)}\overline{\phantom{x^{3}}\ -x^{2}}+13x\\\phantom{x+1)x^{3}\ }-x^{2}+\ \ \ x\\\phantom{x+1)x^{3}}\overline{\phantom{-4x^{2}-\ \ }12x}+8\\\phantom{x+1)x^{3}-2x^{2}+\ }12x-12\\\phantom{x+1)x^{3}-2x^{2}-\ }\overline{\phantom{12x+\ }20}[/tex]

The remainder is 20.

The remainder of the division of p(x) by (x - 1) will be option (D) 20

Concept

  • First of all we will find value of k by using long division method by dividing p(x) with (x + 1)
  • After finding value of k put this value in p(x)
  • After that we will find remainder by dividing p(x) by (x - 1)

How to solve this problem?

The steps are as follow:

  • Given p(x) = x^3-2x^2 + 13x + k
  • We will first use long division method to divide p(x) by (x +1) which is shown in figure 1.
  • So the remainder will be k -16 and given the remainder is equal to -8

k -16 = -8

k = 8

  • After substituting the value of k in p(x), new p(x) will be x^3-2x^2+13x+8
  • To find new remainder we will again use long division of this new p(x) by (x - 1) we will get the new  remainder as 20

Hence the new remainder is 20

Learn more about Long division method here

https://brainly.com/question/25289437

#SPJ2

Ver imagen vijayhalder031
Ver imagen vijayhalder031