Answer:
Part a)
[tex]x = 15.76 m[/tex]
Part b)
[tex]y = 7.94 m[/tex]
Part c)
[tex]x = 26.16 m[/tex]
Part d)
[tex]y = 7.49 m[/tex]
Part e)
[tex]x = 83.23 m[/tex]
Part f)
[tex]y = -75.6 m[/tex]
Explanation:
As we know that catapult is projected with speed 19.9 m/s
so here we have
[tex]v_x = 19.9 cos39.9[/tex]
[tex]v_x = 15.3 m/s[/tex]
similarly we have
[tex]v_y = 19.9 sin39.9[/tex]
[tex]v_y = 12.76 m/s[/tex]
Part a)
Horizontal displacement in 1.03 s
[tex]x = v_x t[/tex]
[tex]x = (15.3)(1.03)[/tex]
[tex]x = 15.76 m[/tex]
Part b)
Vertical direction we have
[tex]y = v_y t - \frac{1]{2}gt^2[/tex]
[tex]y = (12.76)(1.03) - 4.9(1.03)^2[/tex]
[tex]y = 7.94 m[/tex]
Part c)
Horizontal displacement in 1.71 s
[tex]x = v_x t[/tex]
[tex]x = (15.3)(1.71)[/tex]
[tex]x = 26.16 m[/tex]
Part d)
Vertical direction we have
[tex]y = v_y t - \frac{1]{2}gt^2[/tex]
[tex]y = (12.76)(1.71) - 4.9(1.71)^2[/tex]
[tex]y = 7.49 m[/tex]
Part e)
Horizontal displacement in 5.44 s
[tex]x = v_x t[/tex]
[tex]x = (15.3)(5.44)[/tex]
[tex]x = 83.23 m[/tex]
Part f)
Vertical direction we have
[tex]y = v_y t - \frac{1]{2}gt^2[/tex]
[tex]y = (12.76)(5.44) - 4.9(5.44)^2[/tex]
[tex]y = -75.6 m[/tex]