Respuesta :

Answer:

There are no sets S, T for which

[tex]S \cup T^c=S^c\cap T[/tex]

holds

Step-by-step explanation:

Let the set A be

[tex]A=S\cup T^c[/tex]

By de De Morgan's Law

[tex]A^c=S^c\cap ((T)^c)^c[/tex]

But

[tex]((T)^c)^c=T[/tex]

[tex]A^c=S^c\cap T[/tex]

We conclude that

[tex]S \cup T^c=S^c\cap T\Rightarrow A=A^c[/tex]

which is a contradiction because no set is equal to its complement.