Respuesta :
Answer:
area of four such rectangles 117.76 inch^2
Step-by-step explanation:
Given data:
width of rectangle is 23/5 inch
length of rectangle is 32/5 inch
we know that area of rectangle is [tex]length \times width[/tex]
putting all value in the above formula to get desired area of rectangle
area of rectangle is [tex]= \frac{23}{5} \times \frac{32}{5} = 29.44 inch^2[/tex]
hence area of 4 such rectangle will be [tex]= 4\times 29.44 = 117.76 inch^2[/tex]
Answer:
[tex]9\frac{8}{15}\text{ inch}^2[/tex]
Step-by-step explanation:
We have been given that a rectangles is 2 3/5 inches wide and 3 2/3 inches long. We are asked to find the area of the rectangle.
We know that area of rectangle is length time width.
[tex]\text{Area of rectangle}=2\frac{3}{5}\text{ inch}\times 3\frac{2}{3}\text{ inch}[/tex]
Convert mixed fraction into improper fractions:
[tex]\text{Area of rectangle}=\frac{13}{5}\text{ inch}\times \frac{11}{3}\text{ inch}[/tex]
[tex]\text{Area of rectangle}=\frac{13}{5}\times \frac{11}{3}\text{ inch}^2[/tex]
[tex]\text{Area of rectangle}=\frac{13\times11}{5\times3}\text{ inch}^2[/tex]
[tex]\text{Area of rectangle}=\frac{143}{15}\text{ inch}^2[/tex]
[tex]\text{Area of rectangle}=9\frac{8}{15}\text{ inch}^2[/tex]
Therefore, the area of each rectangle is [tex]9\frac{8}{15}[/tex] square inches.