A random sample of 25 fields of rye has a mean yield of 31.2 bushels per acre and standard deviation of 6.99 bushels per acre. Determine the 80% confidence interval for the true mean yield. Assume the population is approximately normal.Step 1 of 2: Find the critical value that should be used in constructing the confidence interval. Round your answer to three decimal places.

Respuesta :

Answer:

Critical value is 1.318 and the confidence interval is 29.357 to  33.042

Step-by-step explanation:

n = 25

x = 31.2

s = 6.99

Degree of freedom = n-1= 25-1 =24

Confidence level = 0.8

So, α = 1- 0.8= 0.2

t critical = [tex]t_{\frac{\alpha}{2},df}=t_{\frac{0.2}{2},24}=t_{0.10,24}=1.318[/tex]

Formula of confidence interval : [tex]\bar{x}-t_{\frac{\alpha}{2},df} \times \frac{s}{\sqrt{n}}[/tex] to  [tex]\bar{x}+t_{\frac{\alpha}{2},df} \times \frac{s}{\sqrt{n}}[/tex]

Confidence interval : [tex]31.2-1.318 \times \frac{6.99}{\sqrt{25}}[/tex] to  [tex]31.2+1.318 \times \frac{6.99}{\sqrt{25}}[/tex]

Confidence interval : [tex]29.357[/tex] to  [tex]33.042[/tex]

Hence critical value is 1.318 and the confidence interval is 29.357 to  33.042